
cp) capillary; md) mold; sat) saturation; nom) nominal; v) vapor; s.m) superheating of the 
melt; m) melt; c) centripetal; cf) centrifugal; max) maximal. 
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NONISOTHERMAL RHEODYNAMICS IN SHS PRESSING OF POWDER 

MATERIALS 

L. S. Stel'makh, N. N. Zhilyaeva, 
and A. M. Stolin 

UDC 532.135:621.762 

The article deals with thermal and rheodynamic processes of SHS pressing (SHS 
stands for self-propagating high-temperature synthesis) of viscous compressi- 
ble materials. It presents numerical calculations of the nonisothermal kinet- 
ics of compaction with different thermal and technological parameters. Condi- 
tions are found for the realization of qualitatively different regimes of com- 
pacting SHS materials. 

One of the topical problems of the theory and practice of SHS pressing (the same as in 
hot pressing) of powdered high melting materials is the study of the state of stress of the 
products of synthesis under the effect of applied external forces. It is usual to apply 
the macrorheological approach to the description of the behavior of porous materials sug- 
gested in [1-3] which makes use of the model of a viscous compressible liquid. Buchatskii 
et al. [3] and Stolin et al. [4] found an analytical solution of the problem of one-sided 
compression of such systems for the case when there is no temperature distribution in the 
material. Buchatskii et al. [5] made a qualitative analysis of different thermal regimes 
of compaction on the assumption that in the process a thermal gradient is not involved. 
The obtained analytical solution of the problem made it possible to evaluate the conditions 
of realization of a quasiisothermal regime of compaction where the process of pressing is 
not accompanied by a noticeable change of temperatures. However, in practice the nonuni- 
formity of the temperature regime in the material and the conditions of heat exchange have 
a substantial effect on the distribution of densities, speeds, and stresses, and consequent- 
ly also on the quality of the finished products. The aim of the present work is a numerical 
analysis of the temperatures, densities, speeds, and stresses within the bulk of viscous 
porous material in the process of its one-sided compression in dependence on the initial 
distribution of temperature and density throughout its volume. 
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As a rule material is pressed in a cylindrical mold, and the equations contained in 
the statement of the problem will therefore be written henceforth in a system of cylindrical 
coordinates. It is assumed that flow is unidimensional, with one velocity component v z 
(henceforth the subscript z will be omitted) and opposed to the direction of the z axis. 
It was shown in [2,3] that the Reynolds number is small on account of the great viscosity 
of the incompressible base of the material (from 10 7 to i0 I~ Pa.sec), and the equations of 
motion can therefore be replaced by the conditions of equilibrium. With the mentioned as- 
sumptions the problem reduces to the solution of the following system of equations of rheo- 
dynamics and heat exchange: 

o--7- + (or )  = 0, 

O~zz -- 0, 
0z 

[4__ ) Oz~ 

Urr = 0"00 := - -  ~ @ OZ ' 

+ = - v -  k (p) . . . .  (T -- To). 
Ot Oz oz ro 

Here it is assumed that the temperature across the section z = const of the pressed compact 
is constant because its transverse dimension is small in comparison with the length, and 
that the thermophysical properties of the material do not depend on the temperature. Heat 
removal in the transverse direction is taken into account by the last term of the equation 
of heat conduction. 

The dependences of shear viscosity D(p, T) and bulk viscosity $(p, T) on the density 
and temperature of the compressible material are adopted in the following form: 

t ~ (9, T) = V.~ (T) ~2 (P) = Vo exp (U i R T )  9.7, 

4 p 4 p'~+* 
~(p, T ) = - - ~ - I ~ ( 9  , T) 1 - - p  -- 3 P , O ~ l _  9exp  ( U / R T ) .  

The dependence of viscosities on density is taken from published data [i, 2] where the em- 
pirical parameter m is chosen on the basis of an experiment. We choose the boundary condi- 
tions: 

OT = I - -  ~ ( T  - -  To ) ,  z = O, 

- -  k (0)  Oz [=~ ( T  - -  T o ) ,  z = Zo, 

G = o  = 0, ~ I~=~o  = - -  P .  

At the initial instant the distribution of density and temperature in the material is speci- 
fied: 

p ( z , O ) = p o ( z ) ,  T (z, O) = T,  (z) , 

The dependence of thermal conductivity on density is adopted in the form of a power law [6]: 

k (p) =ko [p/po] k 

where k is an empirical parameter. 

The movement of the upper boundary of the specimen under the effect of the plunger of 
the press is taken into account in the model in the following way: Up = 8z0/St. 

To simplify the initial system of equations and to be able to compare the results of 
numerical calculations with the analytical solution of the isothermal problem of one-sided 
compression obtained earlier on [4], we also go over the Lagrangian mass system of coordi- 
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nates in which the time t L is the same as time t, and the mass coordinate q has the meaning 
of relative mass of the material in a volume from 0 to z: 

Z 

q=:fp (z, {)dz, 
U 

In view of the adopted equality of times t and t L we henceforth omit the subscript L. The 
statement of the problem in the Lagrangian system of coordinates with boundary and initial 
conditions has the form: 

Ov O(rzz 0o.. + p~ ........ o, - -  = O, 
Ot Oq Oq ( 4 ) 0 o  ( p /q, 

OT 0 [ g(p) p OT ] go __2r ( T - - T o ) ,  
0-5 - =  Oq- L -Nqj (1) cp~ cpp~ro 

OT I - -  ~ (T - -  To), q = O, 
- -  ~ (P) P ~q  = [ a 2 (T - -  To), q = q0, 

%~lq=qo = - -  P, vl,7=o = O, 

9 (q, O) = Po (q), T (q, O) = T ,  (q). 

When the force on the p l u n g e r  of the press is specified, we obtain from the condition 
of equilibrium: azz = -P(t). Taking into account the correlation between stress Ozz and 
velocity, we obtain an equation for determining the flow velocity of the material 

O0 

Oq: =~ 

1 P 

P -~- ~ + ~ 
(2) 

Substituting (2) into the equation of continuity, we write the expression for determining 
the density 

o On p) P 
Ot 4 

We c o n v e r t  t h e  p rob lem t o  d i m e n s i o n l e s s  form by i n t r o d u c i n g  t h e  f o l l o w i n g  v a r i a b l e s  and 
criteria: 

U ( T - - T , ) ,  $= qlqo, o - - ~  

= ~/~(T, ) ,  ~ = ~ / ~ ( r , ) ,  

g__.~o 2~zqg 
F = v / v ~ , ~ = F o = e p l q  2 t, ~ =  ~or, " 

2~o ' goZo , b%(T, )=~iexp  , 

P1 = cplq~ P p,,. = qoP 
)~o~l ( r , )  ' ~z ( r , )  vra 

The s t a t e m e n t  o f  t h e  p rob lem in  d i m e n s i o n l e s s  form i s  f i n a l l y  w r i t t e n  a s  f o l l o w s :  

0 (In p) P1 
O~ 4 - - 

(3) 
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aFo 

a~ P~ 
(F+>' 

( ) P �9 %z :-=%0 : - -  - - ~ - I  t " ' 

(4) 

(5) 

the boundary conditions: 

vi,7-~o = O, 

(6) 

the initial conditions: 

p(q,  O ) = p o ( q ) ,  0(0,  0 ) - - 0 .  (7) 

For solving the equation of heat conduction (5) together with the boundary (6) and 
initial (7) conditions we use the method of balance [7, 8], the conservative implicit dif- 
ference schema, and for solving the finite-difference equations we use the method of matching 
and the iteration method [9, i0]. Equation (3) is solved by the finite difference method 
with the use of the implicit four-point difference schema, and Eq. (4) is solved either by 
Euler's method or by some other single-step method. As a result of the numerical solution 
of the problem we find the distribution of temperature, density, velocity, and stresses in 
the pressed material at any instant. 

Analysis of the Numerical Results. Figure 1 shows the dependences of density on time 
obtained analytically [4] (curve a) and numerically (b, c), corresponding to different con- 
ditions of heat exchange on the boupdaries of the region (b to adiabatic conditions, Bi = 0, 
c to substantial heat exchange with the environment, Bi > i). Numerical calculations are in 
good agreement with the analytical solution of the isothermal problem solely under adiabatic 
conditions. If there is heat exchange between them, there is a considerable discrepancy. 
An analysis of the numerical calculation showed that with nonisothermal pressing the follow- 
ing qualitatively different regimes of compaction are realized: i) without compaction, 2) 
maximal compaction, 3) insufficient compaction. The decisive factor in the realization of 
a certain regime of pressing are the initial viscosity (at the combustion temperature) and 
the range of its change within the characteristic temperature interval (from the combustion 
temperature to the viable temperature). Let us consider each regime separately. 

Regime without Compaction. In this case there is no noticeable compaction of the mater- 
ial. Figure 2a (curve i) shows the characteristic shape of the dependence of density on time 
for ~i = 10s Pa.sec. The regime without compaction is realized when the viscosity of the 
solid base is sufficiently high. Numerical calculations can establish the critical value of 
~, above which this regime is realized. For selected parameters of the problem it was found 
that ~, is equal to 5-10 8 Pa.sec (the dashed line in Fig. 2b). If the initial viscosity is 
higher than the critical one and is a weak function of the temperature (Fig. 2b, curve i), 
then >I(T) > >,, and the regime without compaction is always realized. Under these condi- 

.P! 

o~9 

o~a 

0,7 
i I i 

oj ~5 ~o 

Fig. i. Dependence of the den- 
sity of material on time: a) 
analytical curve; b) curve plot- 
ted from the results of numeri- 
cal calculation on condition 
that the process proceeds adia- 
batically; c) numerical curve 
with specified heat exchange 
Bi > i. Parameters: P = 108 
Pa, Pl = 107 Pa.sec, q0 = 0.04 
m. t, see. 
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Fig. 2. Different regimes of compacting material: i) 
regime without compaction (Pl = 109 Pa.sec); 2) regime 
of maximal compaction (Pl = 107 Pa.sec); 3) regime of in- 
sufficient compaction; a) distribution of density p along 
the mass coordinate q; b) dependence of the viscosity of 
the solid phase Pl on the temperature T. Parameters: P = 
108 Pa, t d = 0, H0 = 0.3. T, K. 
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Fig. 3. Effect of the conditions of heat exchange (Bi) 
on: a) the heterodensity in the material Ap = Pmax - 
Pmin and the maximal density; b) the dimensionless delay 
time Fo d (the hatched area in which, with the given pa- 
rameters of the problem, a compact product cannot be ob- 
tained). Parameters: P = 108 Pa, Pz = 10s Pa.sec, q0 = 
0.04 m. 

tions the initial value of porosity does not have a substantial effect on the maximal value 
of density in compaction. The decisive factor here is in particular the viscosity of the sol- 
id phase or, in other words, the ductility of the grains of the solid carcass. This factor 
determines the resistance to deformation in compaction, and consequently also the intensity 
of this process~ We note that in this regime the thermal processes and the processes of com- 
paction weakly affect each other, i.e., they proceed practically independently of each other. 
In that case the earlier thermal model of SHS pressing [ii] can be used (without taking the 
rheodynamic factors into account). 

Regime of Maximal Compaction. A characteristic feature of this regime is the change of 
density from the initial value to 1 (curve 2, Fig. 2a). This regime is realized when the 
initial viscosity of the solid base during the entire process remains lower than the critical 
one, i.e., pI(T) < 5"108 Pa-sec, e.g., as shown in Fig. 2b (curve 2), when a change of tem- 
perature entails only a small change of viscosity. If the temperature changes only slightly 
(coming close to the adiabatic case), compaction proceeds quasiisothermally, and the process 
is well described by the isothermal formulas of compaction [I]. However, when the tempera- 
ture is uniformly distributed throughout the bulk of the material, model [5] can be used. 
In that case the processes of compaction do not depend on the temperature but the thermal 
processes depend on density (on account of the dependence of the thermophysical properties 
on this variable). 

Regime of Insufficient Compaction. In such a regime density increases noticeably at the 
beginning of the process only, when the material still has retained its ability of plastic 
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Fig. 4. Distribution over the specimen in dependence on 
the delay time: a) of density (curves I, 2, 3 correspond 
to the delay times 0, 5, and i0 sec); b) of the radial 
stresses (curve i corresponds to the case of compaction 
without delay of pressure supply, curve 2 corresponds to 
a delay time of i0 sec); c) of the stress gradient. Pa- 
rameters of the problem: ~l = 107 Pa.sec, P = 108 Pa, 
APo = 0.01. 

deformation. Later the material "freezes" because it is cooled, it loses its viability, 
and density does not change any more (curve 3 in Fig. 2a). This regime is realized when the 
initial value of viscosity of the incompressible base is lower than the critical ~, but high- 
er in the course of the process than the critical value in consequence of the strong depen- 
dence on the temperature (curve 3 in Fig. 2b). Under the conditions of this regime the ther- 
mal processes and the processes of compaction proceed correlatively. Thus, variation of pa- 
rameters of the temperature dependence of the viscosity of the solid base alone ensures a 
continuous transition from one regime of compaction to another. 

The limit state of density and the time the material remains in the plastic state depend 
on the conditions of heat exchange (Blot number) and on the technological parameters. Figure 
3 shows that an increase of the Blot number has a deleterious effect on the final heteroden- 
sity of the material (solid line) and on the maximal value of density (dashed line): with 
Bi ~ 1 the specimen remains uncompacted Pmx < 0.9 and then heterodensity is Ap > 0.1. With 
Bi + 0 the maximal density of the specimen is close to i, and Ap § 0. 

Among the technological parameters of SHS pressing we have to lay emphasis on the delay 
time t d (the time from the onset of initiation of the chemical reaction to the pressure sup- 
ply) which is essential for forming the structure of the specimen and for degassing. The 
existence of such a time boundary separating the stages of synthesis of the material and of 
compaction under the effect of external pressure makes it possible to examine constantly 
the process of SHS pressing. In [ii] it was shown that t d has a substantial effect on the 
existence of a temperature gradient in the material. Instead of the delay time we will 
henceforth use the dimensionless criterion Fo d = atd/q02. An analysis of the numerical re- 
sults shows that a condition of the realization of the regime of compaction is some boundary 
curve Fod--Bi below which lies the working region of SHS pressing, and above which there is 
insufficient compaction (Fig. 35). For real technological regimes of SHS pressing the Fo d 
and Bi numbers have the following ranges of change: 0.02 ~ Bi ~ 2.5; 0 ~ Fo d ~ 5. When the 
delay time within the range of its change becomes longer while Bi is fixed, transition across 
the boundary curve into the unfavorable region (the dashed region in Fig. 3b) is possible. 

The present model made it possible to investigate the effect of the delay time on the 
distribution of density and of stresses in the material (on account of the statement of the 
problem the axial stresses Czz are constant, and the tangential stresses are equal to the 
radial ones Orr = o88 , henceforth we will therefore confine ourselves to dealing with the 
radial stresses art). With short delay times (Fo d = 0.2-10 -2) and uniform initial tempera- 
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ture distribution (T = 2000 K), a uniform state of stress is attained in the material with- 
in the characteristic time of compaction (Fig. 4a, curve I), and the compressive stresses 
are maximal (Fig. 4b, curve i), which is a sign of good quality of the finished product. 
When the delay time is longer, the gradient of radial stresses over the specimen increases 
in consequence of strong cooling of the material from the end faces (Fig. 4e), an ever in- 
creasing part of the material near its end faces remains incompletely compacted (Fig. 4a, b, 
curves 2, 3), and the maximal density of the material also becomes substantially lower. 
Thus, the model under consideration makes it possible to calculate the technological regimes 
of compacting SHS materials and to predict the quality of products from the point of view of 
the level of thermal gradients as well as of the state of stress of the material and of the 
density distribution. It is assumed that on its basis the process of SHS pressing can then 
be optimized. 

NOTATION 

t) time; r, z) transverse and longitudinal coordinate; T) temperature; r0, z0) radius 
and height of the compact, respectively; Pl, ~l) density and viscosity of the incompressible 
base of the material, respectively; P) relative density of the material; P0, H0) initial den- 
sity and porosity of the compact, respectively; k0) thermal conductivity of the material in 

the uncompacted state; ~0--}~p(z, t)dz relative mass of the compact; Orr , o90 , Ozz) radial, 
0 

tangential, and axial stresses, respectively; X, c) thermal conductivity and specific heat 
of the material, respectively; ~, ~) shear and bulk viscosity of the material, respectively; 
T,) characteristic temperature of the process; a, ~l, ~2) heat transfer coefficients in the 
transverse direction, at the upper and lower end face of the compact, respectively; v) flow 
velocity of the material; Up) velocity of the plunger of the press; P) force on the press; 
T) dimensionless time (Fo number); @) dimensionless temperature; U) activation energy of the 
process; R) universal gas constant; T 0) ambient temperature; Bi) Blot number; v m) absolute 
maximal flow velocity of the material. 
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